Differential Control of the Calcium-Dependent Transcription Factors NFAT and NFκB during T-Cell Activation Fisher, Wayne G.¹, Medikonduri, Ram K.¹, Jafri, M. Saleet^{*2} ¹University of Texas at Dallas, Richardson, TX, USA; ²George Mason University, Manassas, VA, USA We have developed mathematical models for the regulation of the Ca^{2+} -dependent transcription factors NFAT and NF κ B that are involved in the activation of the immune and inflammatory responses in T lymphocytes. In resting cells, phosphorylation blocks the nuclear localization signals on NFAT, as does association of NF κ B with the inhibitor I κ B. Consequently both NFAT and NF κ B are retained in the cytoplasm. T cell receptor stimulation initiates a cascade of reactions that cause an increase in intracellular Ca^{2+} concentration. Activated by the increase in Ca^{2+} , calcineurin dephosphorylates NFAT, while the kinase IKK phosphorylates I κ B bound to NF κ B initiating the polyubiquitination and subsequent degradation of the I κ B. As a result, nuclear localization signals are exposed on both NFAT and NF κ B allowing translocation of their free and transcriptionally active forms to the nucleus where they can promote gene transcription. Our models simulate 1) activation and deactivation over physiological Ca^{2+} concentrations; 2) differential response of NFAT and NF κ B to the frequency of Ca^{2+} concentration oscillations as reported by Dolmetsch, Xu, and Lewis (1998); and 3) enhancement of the activity of NFAT by Ca^{2+} oscillations at low calcium concentrations. The model suggests the mechanism by which transcription factor residence time in the nucleus is controlled by calcium signaling. The model also suggests that I κ B degradation is essential for efficient translocation of NF κ B to the nucleus.